Numerical Simulation of Coupled Fractional Differential-Integral Equations Utilizing the Second Kind Chebyshev Wavelets
نویسندگان
چکیده
In order to solve coupled fractional differential-integral equations more effectively and deal with the problem that huge algebraic lead considerable computational complexity large data storage requirements in calculation process, this paper approximates function of unknown solution based on Chebyshev wavelet second kind then combines collocation method numerical nonlinear Fredholm integral-differential equations. By using proposed method, original can be reduced a system linear equations, which easily solved by some mathematical techniques. addition, convergence analysis is studied. Several test problems are presented, absolute error values under different orders given, proves superiority effectiveness method. It provides support for improving precision reliability system.
منابع مشابه
Numerical Solution of a Free Boundary Problem from Heat Transfer by the Second Kind Chebyshev Wavelets
In this paper we reduce a free boundary problem from heat transfer to a weakly Singular Volterra integral equation of the first kind. Since the first kind integral equation is ill posed, and an appropriate method for such ill posed problems is based on wavelets, then we apply the Chebyshev wavelets to solve the integral equation. Numerical implementation of the method is illustrated by two ben...
متن کاملNumerical Solution of Fractional Telegraph Equation Using the Second Kind Chebyshev Wavelets Method
In this paper, the two-dimensional second kind Chebyshev wavelets are applied for numerical solution of the time-fractional telegraph equation with Dirichlet boundary conditions. In this way, a new operational matrix of fractional derivative for the second wavelets is derived and then this operational matrix has been employed to obtain the numerical solution of the above mentioned problem. The ...
متن کاملNumerical Solution of the Nonlinear Fredholm Integral Equation and the Fredholm Integro-differential Equation of Second Kind using Chebyshev Wavelets
Abstract: In this paper, a numerical method to solve nonlinear Fredholm integral equations of second kind is proposed and some numerical notes about this method are addressed. The method utilizes Chebyshev wavelets constructed on the unit interval as a basis in the Galerkin method. This approach reduces this type of integral equation to solve a nonlinear system of algebraic equation. The method...
متن کاملApplication of Chebyshev Polynomials for Solving Abel's Integral Equations of the First and Second Kind
In this paper, a numerical implementation of an expansion method is developed for solving Abel's integral equations of the first and second kind. The solution of such equations may demonstrate a singular behaviour in the neighbourhood of the initial point of the interval ofintegration. The suggested method is based on the use of Taylor series expansion to overcome the singularity which le...
متن کاملThe Second Kind Chebyshev Wavelet Method for Fractional Differential Equations with Variable Coefficients
In this article, the second kind Chebyshev wavelet method is presented for solving a class of multi-order fractional differential equations (FDEs) with variable coefficients. We first construct the second kind Chebyshev wavelet, prove its convergence and then derive the operational matrix of fractional integration of the second kind Chebyshev wavelet. The operational matrix of fractional integr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2022
ISSN: ['1026-7077', '1563-5147', '1024-123X']
DOI: https://doi.org/10.1155/2022/1179298